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Abstract

In this paper, we introduce a new large family of Lévy-driven point processes with
(and without) contagion, by generalising the classical self-exciting Hawkes process
and doubly stochastic Poisson processes with non-Gaussian Lévy-driven Ornstein–
Uhlenbeck-type intensities. The resulting framework may possess many desirable
features such as skewness, leptokurtosis, mean-reverting dynamics, and more impor-
tantly, the ‘contagion’ or feedback effects, which could be very useful for modelling
event arrivals in finance, economics, insurance, and many other fields. We characterise
the distributional properties of this new class of point processes and develop an efficient
sampling method for generating sample paths exactly. Our simulation scheme is mainly
based on the distributional decomposition of the point process and its intensity process.
Extensive numerical implementations and tests are reported to demonstrate the accuracy
and effectiveness of our scheme. Moreover, we use portfolio risk management as an
example to show the applicability and flexibility of our algorithms.
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1. Introduction

Doubly stochastic Poisson processes or Cox processes [39, 40] have now been widely
applied as survival or event timing models in many areas. Compared with a simple Poisson
process, they are better able to capture event arrivals with complex dynamics structures.
However, in reality, except for the impact from external factors, event arrivals may often
present ‘contagion’, clustering, or feedback effects, such as social media sharing online,
trade transactions in market microstructure, defaults in the credit market, jumps in investment
returns, and loss claims in insurance businesses, to name a few. Das, Duffie, Kapadia, and
Saita [44] and Duffie, Eckner, Horel, and Saita [55] provided evidence that Cox models, which
are based on conditional independence assumption, cannot fully capture credit contagion.
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928 Y. QU ET AL.

The phenomena of contagion became more evident in the credit market during the global
financial crisis of 2007–2009 and the European debt crisis since the end of 2009; see [64].
A seminal framework tailored for modelling event contagion is the Hawkes process [70, 71].
It is a self-exciting point process where each arrival of events would trigger a simultaneous
jump in its own intensity and hence more events follow. Empirical evidence and econometric
analysis can be found in [20], [77], [41], [61], [60], [10], [7], [6], and [9]. Recently, it has been
extended in the literature by being combined with Cox processes to enrich the model eligibility,
in the sense that both internal and external impacts can be facilitated in one single framework;
see [21], [22], [46], and [48].

Meanwhile, from a micro perspective, it is becoming more apparent that real financial
data exhibit deviations from normality with the availability of high-frequency data; see
[62] for a pioneering investigation into the high-frequency financial data, and [5] for recent
advances in financial econometrics. Barndorff-Nielsen and Shephard [14, 15] have proposed a
class of stochastic processes, namely non-Gaussian Ornstein–Uhlenbeck (OU) models, which
have gained extensive popularity for modelling the non-normality presented in finance and
economics. They could offer greater flexibility, and possess many crucial features, such as
skewness, leptokurtosis and mean-reverting dynamics, which are often observed in financial
markets; see [88] and [34] for empirical evidence. Moreover, this generality does not hinder
their analytical tractability. In particular, they have become extremely popular for modelling
stochastic volatilities; see [19], [14], [15], [16], [17], [18], and [29]. These stochastic volatility
models have led to other applications such as derivative pricing and risk analysis; see [87]
and [81]. On the other hand, these processes can serve as stochastic intensity models for event
arrivals. For instance, they have been used to model irregularly spaced trade-by-trade intraday
data, mortality rates in insurance, and default intensities for credit risk in finance; see [93],
[30], [69], and [95]. In particular, for credit risk modelling, a mean-reverting OU intensity
could be particularly useful for capturing business cycle effects on average industrial defaults,
as obviously default rates would increase in a recession and decrease in a boom [59]. This is
similar to the environment of interest rates, so defaults and the associated losses in the credit
market often present a mean-reverting pattern; see [64] for detailed analysis and evidence
from a long-term historical perspective. Duffie, Eckner, Horel, and Saita [55] also found a
mean-reverting frailty that would influence US non-financial defaults. Moreover, empirical
evidence shows that the tails of Gaussian distributions are often too thin to capture risk in the
credit market, and fluctuations are often sudden and jump-like, driven by unexpected news
announcements. The distribution of default rates is highly skewed towards large values [64].
Therefore, macroeconomic shocks powered by a Lévy-driven non-Gaussian process rather than
a Gaussian process may be more appropriate for capturing the dynamic structure of default
intensities in reality.

It is therefore natural for us to combine these main streamlines in the literature to form a
unified and consistent framework. In this paper, we construct a new large family of Lévy-driven
point processes, termed the self-exciting jump process with non-Gaussian OU intensity, or the
Lévy-driven contagion process. It is fundamentally powered by a Lévy process. More precisely,
its stochastic intensity is a positive non-Gaussian process with additional self-exciting jumps. It
can also be defined as a branching process via the cluster process representation. Accordingly,
the resulting models are analytically tractable, and they intrinsically inherit the great flexibility
of the two original processes, as well as their desirable features, including skewness, leptokur-
tosis, mean-reverting dynamics, and more importantly, the ‘contagion’ or feedback effects.
These newly constructed processes would then substantially enrich continuous-time models
tailored for quantifying the ‘contagion’ of event arrivals in finance, economics, insurance,
queueing and many other fields.
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Efficient simulation of Lévy-driven point processes 929

Simulation plays a crucial role in the implementation, simulation-based statistical inference
and empirical studies for new models. For instance, for modelling credit risk in practice,
events of extreme losses and defaults are rare, and data are scarce. The key quantities at the
centre of financial risk management, such as the value at risk of an aggregate loss distribution
for a heterogeneous portfolio, are often a lack of closed-form formulas. A simulation-based
approach then becomes a standard technique. In particular, the exact simulation scheme is
highly desirable as it has the primary advantage of generating sample paths according to
the underlying process law exactly [24, 31]. To our knowledge, there is no exact simulation
algorithms in the literature even for our important special cases, the non-Gaussian OU
stochastic intensity models without contagion. We first propose a general sampling framework
for exactly simulating Lévy-driven contagion processes based on the decomposition technique.
This decomposition approach has also been recently used in [47] and [49] to simulate the
classical Hawkes process and point process with CIR intensity, and in [50], [89], and [90] to
simulate tempered stable distributions and gamma-driven Ornstein–Uhlenbeck processes. We
then focus on exploiting some very typical specifications of Lévy processes such as the gamma
process and the tempered stable subordinator, where remarkably the resulting point processes
can be analytically decomposed into several types of basic components, each of which can be
exactly simulated, either directly or via an acceptance–rejection (A/R) scheme. Even though
the underlying process possesses a complex structure, neither truncation nor discretisation are
required. Moreover, there is no numerical inversion for the cumulative distribution function
(CDF) or Laplace (Fourier) transform.

The paper is organised as follows. Section 2 gives the mathematical definitions of this new
family, and explains how they can be constructed from the classical non-Gaussian OU pro-
cesses and the self-exciting point process. In Section 3 we develop a general framework for ex-
actly sampling our new point processes. In Section 4 we derive the exact simulation algorithms
based on the decomposition approach for two explicit cases when the driving Lévy processes
are the gamma process and the tempered stable subordinator, respectively. Extensive numerical
implementations and tests are reported in Section 5 to demonstrate the accuracy and effective-
ness of our algorithms. Section 6 provides some financial applications to credit portfolio risk to
show the applicability and flexibility of our algorithms. Finally, Section 7 draws a brief conclu-
sion and suggests plenty of potential topics for future research based on this new framework.

2. Lévy-driven contagion models

In this section we construct a new framework for modelling event arrivals with contagion
effects based on Lévy processes. That is, the intensity of the point process is set up to be a non-
Gaussian OU process driven by a Lévy subordinator in cooperation with extra self-exciting
jumps. Let us first define a simpler version without the self-exciting component.

Definition 2.1. (Jump process with non-Gaussian intensity.) A jump process with non-
Gaussian intensity is a point process N ≡ {Ti}i=1,2,..., i.e. Nt = ∑

i≥1 1{Ti≤t} with the stochastic
intensity λt satisfying the stochastic differential equation

dλt = −δλt dt + ρ dZt, t ≥ 0, (2.1)

where

• ρ > 0 is an arbitrary positive constant,

• δ > 0 is the constant rate of exponential decay,

• Zt, with Z0 = 0, is a Lévy subordinator, which is called the background driving Lévy
process (BDLP) of a non-Gaussian OU process.
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This is a special case of Cox point processes. A slightly mathematical generalisation, though
very useful for applications, is to further incorporate a feedback mechanism in the framework
by adding a series of self-exciting jumps, i.e. simultaneous jumps (or ‘co-jumps’), in the point
process and its intensity process. More precisely, this new framework, as a generalised version
of the jump process of Definition 2.1, is defined via the stochastic intensity representation, as
follows.

Definition 2.2. (Self-exciting jump process with non-Gaussian intensity.) Nt is a self-exciting
jump process with non-Gaussian intensity, if the intensity process of (2.1) is replaced by

dλt = −δλt dt + ρ dZt + dJt, t ≥ 0, (2.2)

where the extra component Jt is a pure-jump process specified by

Jt :=
Nt∑

i=1

Xi, (2.3)

and {Xi}i=1,2,... are the sizes of self-exciting jumps, as the expression (2.3) reveals that the
jumps simultaneously occur in the point process Nt and its intensity λt, and hence the arrivals
of jumps trigger more jumps afterwards, with FT−

i
-measurable distribution function G(z),

z > 0, occurring at the associated (ordered) arrival times {Ti}i=1,2,..., respectively, and they are
independent of Zt. It means that the functional form of the distribution function G(z) is revealed
just before the arrival time Ti. This distribution could have a highly general dependence
structure G(z) = G(z | ·). For example, it could depend on the initial intensity λ0, the past
history of intensity at or just before the jump arrival times {Tk}k=1,2,...,i, all past jump sizes
{Xk}k=1,2,...,i−1, or the cumulated number of jumps Nt, and so on, as long as we can record this
information, for example,

G(z) = G(z | T1, T2, . . . , Ti, λ0, λT−
1
, . . . , λT−

i
, λT1, . . . , λTi−1 ).

This is similar to the adaptive model setting of [63], but it is different from the classical Hawkes
process.

Similarly to the Hawkes process [72], Nt in Definition 2.2 can be equivalently redefined as
a branching process via a cluster process presentation [43]. More precisely, Nt is a cluster
point process which consists of two types of points: immigrants and their offspring. The
arrivals of immigrants follow a Cox process with non-Gaussian OU intensity (2.1). Each
immigrant generates its offspring, each offspring would generate further offspring, and so on.
The generation of any offspring follows a Cox process with exponentially decaying intensity

X∗ e−δ(t−T∗), where X∗ D= Xi and T∗ is the arrival (birth) time of its previous generation. The
superposition in [43] of all of these points forms our new self-exciting point process Nt with
the stochastic intensity (2.2).

Note that, given the initial intensity level λ0 > 0, the intensity process (2.2) can be
equivalently expressed as

λt = λ0 e−δt + ρ

∫ t

0
e−δ(t−s) dZs︸ ︷︷ ︸

exogenous commonly shared risk

+
Nt∑

i=1

e−δ(t−Ti)Xi,︸ ︷︷ ︸
endogenous contagion risk

t ≥ 0,
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FIGURE 1: A sample path of interarrival intensity process (without self-exciting component) within the
time period t ∈ [0, 5] when the BDLP is a gamma process.

which is positive and càdlàg. In fact, this new framework integrates two major types of risk
sources. For example, in the context of credit risk or systemic risk, the first part (i.e. the first
two terms) is to model the cyclical dependence of companies on some exogenous risk (e.g.
movements of interest or FX rates) commonly shared in the entire market, and the cyclical
oscillation is captured by the mean-reverting non-Gaussian OU process; fundamental common
shocks are captured by the pure-jump process Zt. The second part (i.e. the last term) is to
model the endogenous contagion risk due to the local interaction of companies in their business
network, without which the overall risk would be underestimated.

The interarrival intensity process {λt}Ti≤t<Ti+1 , for modelling exogenous commonly shared
risk, is defined as the parts of intensity process excluding self-exciting jumps, i.e. (2.1), or

λt = e−δtλ0 + ρ

∫ t

0
e−δ(t−s) dZs, t ∈ [Ti, Ti+1).

For instance, a sample path of the interarrival intensity process (without self-exciting compo-
nent) within the time period t ∈ [0, 5] when the BDLP is a gamma process is represented in
Figure 1.

This framework is the generalisation of several classical models in the literature. If there
are no self-exciting jumps, i.e. Xi ≡ 0 for any i, then the intensity process (2.2) is a non-
Gaussian OU process [14, 15, 16, 17, 19]. If there is no BDLP Zt, then the point process
Nt is a generalised Hawkes process [70, 71] with random marks. If the BDLP Zt is trivially a
subordinator of compound Poisson, then Nt is a dynamic contagion process [46].

For notational simplicity, we denote the Lévy measure of BDLP Zt by ν, the associated
Laplace exponent and mean at unit time by

�(u) :=
∫ ∞

0
(1 − e−uy)ν(dy), μZ :=E[Z1] =

∫ ∞

0
yν(dy), u > 0,

the Laplace transform, mean of self-exciting jump sizes and a constant, respectively, by

ĝ(u) :=
∫ ∞

0
e−uy dG(y), μG :=

∫ ∞

0
y dG(y), η := δ − μG.

They are all assumed to be finite. In addition, we denote the (i + 1)th interarrival time by

τi+1 := Ti+1 − Ti, i = 0, 1, 2, . . . , T0 = 0,

and the cumulative intensity process at time t by 	t := ∫ t
0 λu du.
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932 Y. QU ET AL.

One may be interested in their basic distributional properties such as means and Laplace
transforms, and we provide some brief results for them in Appendix A with proofs. In
particular, the conditional expectation of point process is provided here in Proposition 2.1,
as it will be used later as a simple and general benchmark for numerically validating our newly
developed simulation algorithms.

Proposition 2.1. (Conditional expectation of point process.) The expectation of Nt+s condi-
tional on Nt and λt is given by

E[Nt+s | Nt, λt] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Nt + ρμZ

η
s +

(
λt − ρμZ

η

)
1 − e−ηs

η
η �= 0,

Nt + λts + 1

2
ρμZs2 η = 0,

s > 0.

3. General framework for exact simulation

In this section we outline an exact simulation framework based on exact distributional
decomposition for a general point process of Lévy-driven non-Gaussian OU intensity with
and without self-exciting jumps as defined in Definition 2.2 and 2.1, respectively. The entire
simulation scheme can be decomposed into three major steps.

(i) Conditional on the current arrival time Ti and the associated intensity level λTi , generate
the next interarrival time τi+1.

(ii) Further conditional on the realisation of this interarrival time τi+1, generate the pre-jump
intensity level λTi+τ−

i+1
right before the next arrival time Ti+1 = Ti + τi+1.

(iii) Add a self-exciting jump size Xi+1 upon the intensity process λt and one unit in the point
process Nt both at the next arrival time Ti+1 = Ti + τi+1.

By recursively implementing the three steps above, a full path of the point process Nt in any
time horizon can be exactly produced without bias. A graphical illustration of this proposed
algorithm design is provided in Figure 2.

The third step is in fact straightforward. In particular, if Xi+1 ≡ 0 for any i, then it
corresponds to the version without self-exciting jumps. In order to execute the first two steps,
we have first to further investigate the joint distributional properties of the next interarrival
time τi+1 and the next pre-jump intensity level λTi+τ−

i+1
, which can be characterised by the

conditional joint transform as follows.

Theorem 3.1. (Joint transform of pre-jump intensity and cumulative intensity.) Conditional
on the intensity level λTi at the ith arrival time Ti, the joint transform of (λTi+τ− , 	Ti+τ − 	Ti)
for any given period τ ∈ (0, τi+1) is given by

E[e−vλTi+τ− e−(	Ti+τ −	Ti ) | λTi]

= exp

(
−

[
1

δ
+

(
v − 1

δ

)
w

]
λTi − ρ

∫ 1/δ+(v−1/δ)w

v

�(u)

1 − δu
du

)
, τ ∈ (0, τi+1),

(3.1)

where w := e−δτ .
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FIGURE 2: Exact simulation procedures for a path of point process Nt and the skeleton of its intensity
process λt around the period [Ti, Ti+1].

Proof. Given the ith arrival time Ti, the infinitesimal generator of (	, λ, t) within the period
t ∈ [Ti, Ti + τi+1) acting on any function f (	, λ, t) within its domain 
(A) is given by

Af (	, λ, t) = ∂f

∂t
− δλ

∂f

∂λ
+ λ

∂f

∂	
+ ρ

{ ∫ ∞

0
[ f (	, λ + y, t) − f (	, λ, t)]ν(dy)

}
. (3.2)

Consider a function
f (	, λ, t) = e−ṽ	 e−λA(t) eR(t), ṽ ∈R

+, (3.3)

where A(t) and R(t) are deterministic and differentiable functions with respect to t. Substituting
(3.3) into (3.2) and setting Af = 0, we have

−λA′(t) + R′(t) + δλA(t) − ṽλ − ρ�(A(t)) = 0.

Since this equation holds for any λ and 	, it is equivalent to the equations

A′(t) = δA(t) − ṽ, R′(t) = ρ�(A(t)).

Hence, for any time t ∈ [Ti, Ti + τi+1), we have

A(t) = k eδt − ṽ
eδt − 1

δ
, R(t) = ρ

∫ t

0
�

(
k eδs − ṽ

eδs − 1

δ

)
ds, k ∈R

+.

By the basic property of infinitesimal generator in [45], we have the martingale

e−ṽ	t exp

(
−

(
k eδt − ṽ

eδt − 1

δ

)
λt + ρ

∫ t

0
�

(
k eδs − ṽ

eδs − 1

δ

)
ds

)
.

Setting ṽ = 1 and A(Ti + τ−) = v for any τ ∈ (0, τi+1) and using the martingale property, we
have

E[e−vλTi+τ− e−(	Ti+τ −	Ti ) | λTi]

= exp

(
−

[
1

δ
+

(
v − 1

δ

)
w

]
λTi − ρ

∫ τ

0
�

(
1

δ
+

(
v − 1

δ

)
e−δs

)
ds

)
.

Hence, we can immediately obtain (3.1) by the change of variable u = 1/δ + (v − 1/δ) e−δs.
�

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2019.44
Downloaded from https://www.cambridge.org/core. London School of Economics Lib, on 16 Nov 2019 at 12:13:01, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2019.44
https://www.cambridge.org/core


934 Y. QU ET AL.

Theorem 3.1 provides us with a crucial tool for further investigating the distributional
properties of the interarrival time τi+1 and the pre-jump intensity level λTi+τ−

i+1
, jointly and

separately, which later leads to their efficient algorithms for exact simulation as follows. Note
that, however, the main mathematical contribution of this paper is the exact distributional
decomposition for our new point processes via Theorem 3.1 rather than deriving the transform
in Theorem 3.1.

3.1. Exact simulation of interarrival time

Let us first outline how to simulate the interarrival time. Given the intensity level λTi at the
ith arrival time Ti, interestingly, the (i + 1)th interarrival time τi+1 can be exactly expressed as
the minimum of two much simpler random variables V∗

Ti
and V∗, where

(i) V∗
Ti

is a defective random variable, which can be directly generated by an explicit inverse
transform,

(ii) V∗ is a well-defined random variable, which can be exactly simulated by a simplified
version of the classical thinning scheme [79].

Algorithm 3.1. (Exact simulation of interarrival time.) Conditional on the intensity level λTi ,
the next interarrival time τi+1 can be exactly simulated via

τi+1
D=

{
V∗ ∧ V∗

Ti
Di > 0,

V∗ Di < 0,

where

• Di is simulated via

Di: = 1 + δ

λTi

ln U1, U1 ∼ U [0, 1],

• V∗
Ti

is a simple defective random variable with P{V∗
Ti

= ∞} = exp ( − 1
δ
λTi),

V∗
Ti

D= − 1

δ
ln Di, Di > 0, (3.4)

• V∗ is the first arrival time of a non-homogeneous Poisson process with the rate function

ζt := ρ�(G0(t)), G0(u) := 1 − e−δu

δ
, u ≥ 0, (3.5)

and it can be exactly simulated via the simplified thinning scheme of Algorithm 3.2.

Proof. Setting v = 0 in (3.1) of Theorem 3.1, we have

P{τi+1 > τ | λTi} =E[e−(	Ti+τ −	Ti ) | λTi] = P{V∗ > τ } × P{V∗
Ti

> τ },
where

P{V∗ > τ } = exp

(
− ρ

∫ τ

0
�(G0(u)) du

)
, P{V∗

Ti
> τ } = e−G0(τ )λTi . (3.6)

This implies that the next interarrival time τi+1 conditional on the current intensity level λTi

can be expressed as the minimum of two independent random variables V∗ and V∗
Ti

. Note that
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Efficient simulation of Lévy-driven point processes 935

V∗
Ti

is a defective random variable that has a mass probability at the infinity, since the CDF
of V∗

Ti
is

FV∗
Ti

(τ ) = 1 − e−G0(τ )λTi ,

with

FV∗
Ti

(∞) = 1 − exp

(
− 1

δ
λTi

)
< 1,

and the density fV∗
Ti

(τ ) > 0 for any τ > 0. Obviously, if Di > 0, then V∗
Ti

can be exactly

simulated using the explicit inverse transform (3.4), whereas V∗ can be interpreted as the first
arrival time from a non-homogeneous Poisson process, and it can be exactly simulated via
Algorithm 3.2 as follows. �

Algorithm 3.2. (Simplified thinning scheme.) V∗ can be exactly simulated by the following
steps.

1. Initialise the candidate time t̃ = 0.

2. Generate an exponential random variable E∗ ∼ Exp (ζ∞) where

ζ∞ := lim
t→∞ ζt = ρ�

(
1

δ

)
, (3.7)

and set t̃ = t̃ + E∗.

3. Generate a uniform random variable U2 ∼ U [0, 1],

• if U2 ≤ ζt̃/ζ∞, then accept this candidate by setting V∗ = t̃,

• if U2 > ζt̃/ζ∞, then reject this candidate, and go back to step 2 and continue.

Proof. Since ζt in (3.5) is a strictly increasing and concave function of time t with the
initial value ζ0 = 0 at time t = 0, the maximum level is ζ∞. Then the algorithm above is in
fact a simplified version of the classical thinning scheme [79] where only the first arrival time
within the period of [0, t] is recorded. �

3.2. Exact simulation of pre-jump intensity level

Conditional on the realisation of interarrival time τi+1 as generated by Algorithm 3.1, the
Laplace transform of the next pre-jump intensity level λTi+τ−

i+1
is provided as follows.

Theorem 3.2. (Laplace transform of pre-jump intensity.) Conditional on the intensity level
λTi and the (i + 1)th interarrival time τi+1, the Laplace transform of pre-jump intensity level
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λTi+τ−
i+1

is given by

E[e
−vλ

Ti+τ
−
i+1 | τi+1 = τ, λTi]

= e−vwλTi × exp

(
− ρ

∫ 1/δ+(v−1/δ)w

v

�(u) − �
(
u − u−1/δ

v−1/δ
v
)

1 − δu
du

)

×
ρ

δ

∫ ∞

0
e−vs

∫ s/w

s
es/δ e−y/δν(dy) ds + wλTi

ρ

δ

∫ ∞

0

∫ s/w

s
es/δ e−y/δν(dy) ds + wλTi

. (3.8)

Proof. Note that the density function of the (i + 1)th interarrival time conditional on the
intensity level λTi is

P{τi+1 ∈ dτ | λTi} =E

[
λTi+τ− exp

(
−

∫ Ti+τ

Ti

λu du

) ∣∣∣ λTi

]
dτ,

which implies that

E
[
e
−vλ

Ti+τ
−
i+1 1{τi+1∈dτ } | λTi

] =E

[
λTi+τ− e−vλTi+τ− exp

(
−

∫ Ti+τ

Ti

λu du

) ∣∣∣ λTi

]
dτ .

Hence, we have

E
[
e
−vλ

Ti+τ
−
i+1 | τi+1 = τ, λTi

] = E
[
λTi+τ− e−vλTi+τ− e−(	T+τ −	Ti ) | λTi

]
E

[
λTi+τ− e−(	Ti+τ −	Ti ) | λTi

] . (3.9)

The numerator of (3.9) can be obtained by differentiating the joint transform (3.1) with respect
to v, that is,

E
[
λTi+τ− e−vλTi+τ− e−(	Ti+τ −	Ti ) | λTi

]
= − ∂

∂v
E

[
e−vλTi+τ− e−(	Ti+τ−−	Ti ) | λTi

]
= − ∂

∂v

[
exp

(
−

[
1

δ
+

(
v − 1

δ

)
e−δτ

]
λTi

)

× exp

(
− ρ

∫ τ

0
�

(
1

δ
+

(
v − 1

δ

)
e−δu

)
du

)]

= − ∂

∂v

[
e−Gv(τ )λTi × e−ρFv(τ )]

= −
[
ρ

∂

∂v
Fv(τ ) + ∂

∂v
Gv(τ )

]
× e−Gv(τ )λTi e−ρFv(τ ),

where

Gv(u) := 1

δ
+

(
v − 1

δ

)
e−δu, Fv(τ ) :=

∫ τ

0
�(Gv(u)) du,
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and
∂

∂v
Gv(τ ) = −λTi e−δτ ,

∂

∂v
Fv(τ ) =

∫ τ

0

∫ ∞

0
y e−δu e−[1/δ+(v−1/δ) e−δu]yν(dy) du.

Note that ν is the Lévy measure for a general BDLP Zt, so we have

E
[
e
−vλ

Ti+τ
−
i+1 | τi+1 = τ, λTi

]

=

(
ρ

∫ τ

0

∫ ∞

0
y e−δu e−[1/δ+(v−1/δ) e−δu]yν(dy) du + wλTi

)
× e−Gv(τ )λTi e−ρFv(τ )(

ρ

∫ τ

0

∫ ∞

0
y e−δu e−(1/δ)(1−e−δu)yν(dy) du + wλTi

)
× e−G0(τ )λTi e−ρF0(τ )

=
ρ

∫ τ

0

∫ ∞

0
y e−δu e−[1/δ+(v−1/δ) e−δu]yν(dy) du + wλTi

ρ

∫ τ

0

∫ ∞

0
y e−δu e−(1/δ)(1−e−δu)yν(dy) du + wλTi

× E
[
e−vλTi+τ− e−(	Ti+τ −	Ti ) | λTi

]
E

[
e−(	Ti+τ −	Ti ) | λTi

] . (3.10)

The first term of (3.10) can be calculated more explicitly as

ρ

∫ τ

0

∫ ∞

0
y e−δu e−[1/δ+(v−1/δ) e−δu]yν(dy) du + wλTi

ρ

∫ τ

0

∫ ∞

0
y e−δu e−(1/δ)(1−e−δu)yν(dy) du + wλTi

=
ρ

∫ 1/δ+(v−1/δ)w

v

∫ ∞

0
y

u − 1/δ

v − 1/δ
e−uyν(dy)

du

1 − δu
+ wλTi

ρ

∫ 1/δ+(v−1/δ)w

v

∫ ∞

0
y

u − 1/δ

v − 1/δ
e−(u−u−1/δ/v−1/δv)yν(dy)

du

1 − δu
+ wλTi

=
ρ

1 − δv

∫ 1/δ+(v−1/δ)w

v

∫ ∞

0
y e−(u−1/δ)y e−y/δν(dy) du + wλTi

ρ

1 − δv

∫ 1/δ+(v−1/δ)w

v

∫ ∞

0
y e

−(u−
(

1/δ− u−1/δ
v−1/δ

v
)

y
e−y/δν(dy) du + wλTi

=
−ρ

δ

∫ (1−δv)w

1−δv

∫ ∞

0
y e((1−δv)zy)/δ e−y/δν(dy) dz + wλTi

−ρ

δ

∫ (1−δv)w

1−δv

∫ ∞

0
y ezy/δ e−y/δν(dy) dz + wλTi

=
ρ

δ

∫ ∞

0
e−vs

∫ s/w

s
es/δ e−y/δν(dy) ds + wλTi

ρ

δ

∫ ∞

0

∫ s/w

s
es/δ e−y/δν(dy) ds + wλTi

. (3.11)
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The denominator of the second term of (3.10) can also be obtained nicely by setting v = 0 in
the joint transform (3.1), that is,

E
[
e−(	Ti+τ −	Ti ) | λTi

] = exp

(
− 1 − w

δ
λTi − ρ

∫ 1/δ+(v−1/δ)w

v

�
(
u − u−1/δ

v−1/δ
v
)

1 − δu
ds

)
.

Therefore the second term of (3.10) can be expressed by

E
[
e−vλTi+τ− e−(	Ti+τ −	Ti ) | λTi

]
E

[
e−(	Ti+τ −	Ti ) | λTi

]

=
exp

(
−

[
1

δ
+

(
v − 1

δ

)
w

]
λTi

)
exp

(
− ρ

∫ 1/δ+(v−1/δ)w

v

�(u)

1 − δu
du

)
exp

(
− 1

δ
(1 − w)λTi

)
exp

(
− ρ

∫ 1/δ+(v−1/δ)w

v

�
(
u − u−1/δ

v−1/δ
v
)

1 − δu
du

)

= e−vwλTi × exp

(
− ρ

∫ 1/δ+(v−1/δ)w

v

�(u) − �
(
u − u−1/δ

v−1/δ
v
)

1 − δu
du

)
. (3.12)

Finally, we obtain (3.8) immediately by combining the results from (3.11) and (3.12). �

Apparently, given the ith arrival time Ti and the (i + 1)th interarrival time τi+1, the pre-jump
intensity level λTi+τ−

i+1
can be simulated by the numerical inversion of the Laplace transform

(3.8) for any Lévy-driven contagion process once the associated Lévy measure ν (and the
Laplace exponent �) are specified. Indeed, exact simulation for stochastic processes based on
the numerical inversion of the Laplace or Fourier transforms has been widely adopted in the
literature; see [24], [66], [32], [28], and [74].

However, for some subclasses such as the very popular specifications of gamma and
tempered stable BDLPs, quite remarkably, based on Theorem 3.2 the pre-jump intensity level
can be exactly decomposed into several simple elements, each of which can easily be simulated
exactly without any numerical inversion procedure. In fact, this exact decomposition approach
appropriately breaks the Lévy measure of the subordinator, and thereby it can be achieved by
developing an exact distributional decomposition through Laplace-transform representations.
In this paper, our focus is mainly on this decomposition approach, as it leads to a very efficient
simulation algorithm for exactly sampling the whole point process, and more importantly,
it does not involve additional discretisation or truncation errors which are inevitable in the
numerical inversion approach. We will present our discovery based on the decomposition
approach in much more detail later in Section 4.

3.3. Exact simulation of self-exciting jumps

Based on our key results of Algorithm 3.1 for the interarrival time τi+1 and Theorem 3.2
for the associated pre-jump intensity level λTi+τ−

i+1
, it is now straightforward to integrate the

self-exciting jumps further as the final step.

Algorithm 3.3. (Exact simulation of self-exciting jumps.) Conditional on (λTi, Ti) for any step
index i ∈N

+, the next self-exciting jumps occurring simultaneously in the intensity process
and the point process can be exactly simulated via the following steps.
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Efficient simulation of Lévy-driven point processes 939

1. Simulate the (i + 1)th interarrival time τi+1 by thinning via Algorithm 3.1.

2. Set the (i + 1)th arrival time by Ti+1 = Ti + τi+1.

3. Simulate the (i + 1)th pre-jump intensity λT−
i+1

by numerical inversion or exact decom-

position for its Laplace transform in Theorem 3.2.

4. Add a self-exciting jump of size Xi+1 to the intensity process at the (i + 1)th arrival time
Ti+1, i.e.

λTi+1 = λT−
i+1

+ Xi+1. (3.13)

5. Add one unit to the point process at the (i + 1)th arrival time Ti+1, i.e. NTi+1 = NT−
i+1

+ 1.

By recursively implementing Algorithm 3.3, the skeleton of any non-Gaussian OU intensity
process λt and the associated full path of point process Nt in continuous time can be exactly
generated. Moreover, there is almost no restriction on the size of self-exciting jump, Xi+1. It is
very flexible as long as it does not overshoot the zero bound: it could be a constant, or a random
variable with highly general dependence on the information before and at the arrival time Ti.

Overall, the whole process can be decomposed into interarrival times, pre-jump intensity
levels and self-exciting jumps. In general, each of the pre-jump intensity levels in step 3 can be
simulated in general by numerically inverting (3.8) using the Fourier inversion technique, once
we specify a subordinator for the BDLP Zt. However, for some subclasses, even the numerical
inversion can be avoided. That is, the pre-jump intensity allows a further exact distributional
decomposition, which leads to an exact simulation algorithm without numerical inversion.
The resulting scheme thereby has no bias or truncation errors.

4. Typical examples: gamma and tempered stable contagion models

For model implementation, one needs to further specify the BDLP in an explicit form.
Probably the most widely used and representative Lévy subordinators in the literature are the
gamma process and the tempered stable (TS) subordinator. The term tempered stable in the
context sometimes refers to exponential tilted stable (see [94] and [92] for more information).
More precisely, they are two typical examples of Lévy processes with stationary, independent,
and non-negative increments starting at 0 with finite variation and infinite activity, which
means that there are infinitely many small jumps within any finite time interval (for some
strong evidence from financial data see [80], [3], [4], and [78]); these processes behave very
differently from the trivial case of compound Poisson process. Because of this nature, they
cannot be simulated exactly by traditional methods for discretising sample paths. We provide
the definitions for them using the Lévy measures (4.1) and (4.3) in Definitions 4.1 and 4.2,
respectively.

Definition 4.1. (Gamma distribution and gamma process.) The gamma distribution with shape
parameter a and rate parameter b, denoted by Gamma (a, b), has the density function

fGamma (a,b)(s) = ba

(a)
sa−1 e−bs, s > 0, a, b > 0,

where (·) is the gamma function, i.e. (u) := ∫ ∞
0 su−1 e−s ds. The gamma process {Gt, t ≥ 0}

is a pure-jump increasing Lévy process with independently gamma-distributed increments
satisfying G1 ∼ Gamma (a, b), G0 = 0, and it has Lévy measure

ν(ds) = as−1 e−bs ds, (4.1)
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and the Laplace exponent

�(u) = a ln

(
1 + u

b

)
, (4.2)

and the mean at unit time
μZ =E[Z1] = a

b
.

The gamma distribution, as a well-known right-skewed distribution, is approximated by
a normal distribution when its mean is large, and it has many computational conveniences.
A well-known convenience, similar to the normal distribution, is that if {Yi}i=1,2,...,m are
independent, identically distributed (i.i.d.) random variables following a gamma distribution
with mean μY and variance σ 2

Y , then the sum
∑m

i=1 Yi is gamma-distributed with mean mμY

and variance mσ 2
Y . Thus it is a very useful building block as the risk driver. Therefore, we

provide applications for the gamma-contagion model later in Section 6.

Definition 4.2. (Tempered stable (TS) distribution and tempered stable (TS) subordinator.)
The positive tempered stable (TS) distribution, abbreviated as TS (α, β, θ ), is defined by its
Lévy measure

ν(dy) = θ

yα+1
e−βy dy, y ≥ 0, α ∈ (0, 1), β, θ ∈R

+, (4.3)

with the Laplace exponent

�(u) = −θ( − α)
[
(β + u)α − βα

]
, (4.4)

the mean at unit time
μZ =E[Z1] = θβα−1(1 − α),

where α is the stability index, θ is the intensity parameter, and β is the tilting parameter. The
tempered stable (TS) subordinator is a Lévy process {Zt : t ≥ 0} such that Z1 ∼ TS (α, β, θ ) for
0 < α < 1 and β, θ > 0.

In fact, tempered stable distribution with three parameters is a very general and flexible
distribution. The stable index α determines the importance of small jumps for the process
trajectories, the intensity parameter θ controls the intensity of jumps, and the tilting parameter
β determines the decay rate of large jumps. In particular, if α = 1/2, it reduces to a very
important distribution, the inverse Gaussian (IG) distribution, which can be interpreted as the
distribution of the first passage time of a Brownian motion to an absorbing barrier. So, this
family of tempered stable subordinators in Definition 4.2 also covers the inverse Gaussian
(IG) subordinator as an important special case [11, 12]. Conventionally, the IG distribution is
denoted by IG (μIG, λIG), where μIG is the mean parameter and λIG is the rate parameter;
see [33] for a detailed introduction to IG distributions. The IG subordinator is a special TS
subordinator such that the BDLP Zt ∼ IG (t/c, t2) for any c, t ∈R

+, that is,

IG
(

t

c
, t2

)
D= TS

(
1

2
,

c2

2
,

t√
2π

)
.

Many scholars have adopted gamma, inverse Gaussian, and tempered stable subordinators
as the building blocks to further construct other useful stochastic processes, and there are
tremendous relevant papers and work in the literature; see [14, 15, 17], [35], [76], [95],
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Efficient simulation of Lévy-driven point processes 941

and [81], to name a few. Their main attraction is that the resulting models could possess
skewness and leptokurtosis marginally, while remaining highly mathematically tractable. Our
new models introduced in this paper can additionally incorporate the ‘contagion’ property,
which is also very desirable from the perspective of applications.

Exact simulation of interarrival time. For each case, the interarrival time can be simulated via
the general algorithm of thinning scheme, Algorithm 3.2, by simply calculating ζ∞ in (3.7)
from (3.5) explicitly as

ζ∞ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρa ln

(
1 + 1

δb

)
for gamma,

−ρθ( − α)

[(
β + 1

δ

)α

− βα

]
for TS.

Exact simulation of pre-jump intensity. The pre-jump intensity level conditional on the
realisation of interarrival time is characterised by the Laplace transforms (3.8) in Theorem 3.2,
with Lévy measures ν and Laplace exponents � specified by (4.1)–(4.2) and (4.3)–(4.4) for
the gamma and TS cases, respectively. For both cases, the integral transforms of the pre-jump
intensity levels can in fact be broken down into several simple elements.

The Laplace transform of pre-jump intensity level with three terms in (3.8) in fact consists of
two parts: (3.11) and (3.12). Strikingly, based on Theorem 3.2, the first two terms of (3.8), i.e.
(3.12), can be further exactly decomposed for the specified TS and gamma cases, respectively,
as follows.

Algorithm 4.1. (Exact simulation of pre-jump intensity level for -contagion.) For the
-contagion, conditional on the intensity level λTi and the realisation of the (i + 1)th
interarrival time τi+1 = τ , the distribution of the (i + 1)th pre-jump intensity level λTi+τ− can
be exactly decomposed by

λTi+τ− | λTi

D= wλTi + ̃ + B̃ × S +
Ñ∑

j=1

Sj, (4.5)

where ̃, B̃, S, Ñ and {Sj}j=1,2,... are all independent of each other,

• ̃ is a gamma random variable of

̃ ∼ Gamma
(

− aρ

δ
ln w,

ϑ

w
− 1

δ

)
, ϑ := b + 1

δ
,

• B̃ is a Bernoulli random variable taking 0 with probability p1 and 1 with probability p2,
and

p1 = wλTi

(aρ/δ)C + wλTi

, p2 = (aρ/δ)C

(aρ/δ)C + wλTi

, C := δ ln

(
bδ + 1 − w

bδ

)
,

• S is an exponential random variable of S ∼ Exp (ϑW0 − 1/δ) and

W0
D= [1 − bδ(e(C/δ)U0 − 1)]−1, U0 ∼ U [0, 1], (4.6)
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• Ñ is a Poisson random variable of rate (aρ/δ)ϑCw and

Cw :=
∫ 1/w

1

ln u

ϑu − 1/δ
du,

• {Sj}j=1,2,... are i.i.d. with Sj ∼ Exp (ϑW − 1/δ), and W can be exactly simulated via the
A/R scheme of Algorithm B.1.

Proof. In fact, Algorithm 4.1 is only an explicit specification of Theorem 3.2. Let us first
calculate the first two terms of (3.8), i.e. (3.12), by

E
[
e−vλTi+τ− e−(	Ti+τ−−	Ti ) | λTi

]
E

[
e−(	Ti+τ−−	Ti ) | λTi

]
= e−vwλTi × exp

(
− aρ

δ
ln

(
1

w

) ∫ ∞

0
(1 − e−vs)s−1 e−(ϑ/w−1/δ)s ds

)

× exp

(
− aϑρ

δ

∫ ∞

0
(1 − e−vs)

∫ 1/w

1

(
ϑu − 1

δ

)
e−(ϑu−1/δ)s ln u

ϑu − 1/δ
du ds

)
.

Then, by calculating the whole equation (3.8) more explicitly, the conditional Laplace
transform of the pre-jump intensity level λTi+τ− can be decomposed into four parts:

E
[
e
−vλ

Ti+τ
−
i+1 | τi+1 = τ, λTi

]
= e−vwλTi × exp

(
− ρ

δ
ln

(
1

w

) ∫ ∞

0
(1 − e−vs)s−1 e−(θ/w−1/δ)s ds

)

× exp

(
− aϑρ

δ

∫ ∞

0
(1 − e−vs)

∫ 1/w

1

(
ϑu − 1

δ

)
e−(ϑu−1/δ)s ln u

ϑu − 1/δ
du ds

)
× aρC/δ

aρC/δ + wλTi

×
[∫ ∞

0
e−vs

∫ 1/w

1

(
ϑu + 1

δ

)
e−(ϑu−1/δ)s 1

C(ϑu2 − 1/δu)
du ds + wλTi

aρC/δ + wλTi

]
.

(4.7)

This decomposition of (4.7) indicates that the conditional distribution of λTi+τ− is the sum of
four independent simple elements of (4.5): (i) one deterministic trend, (ii) one random variable
B̃ × S, (iii) one gamma random variable, and (iv) one compound Poisson random variable.
Note that B̃ × S can be alternatively defined as just one single random variable by

B̃ × S
D=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 with probability p1 = wλTi

(aρ/δ)C + wλTi

,

S ∼ Exp
(

ϑW0 − 1

δ

)
with probability p2 = (aρ/δ)C

(aρ/δ)C + wλTi

.

The CDF of W0 is

FW0 (u) = 1

Cw(a + 1/δ)
ln

(
(a + 1/δ)u − 1/δ

a

)
, u ∈

[
1,

1

w

]
,
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which can be inverted explicitly, so we have (4.6). The compound Poisson random variable∑Ñ
j=1 Sj has the Laplace transform

exp

(
− aϑρ

δ
Cw

∫ ∞

0
(1 − e−vs)

∫ 1/w

1

(
ϑu − 1

δ

)
e−(ϑu−1/δ)s ln u

Cw(ϑu − 1/δ)
du ds

)
,

so the Poisson rate is aϑρ/δCw, and jump-sizes {Sj}j=1,2,... follow an exponential distribution
with rate (ϑW − 1/δ). Here, W is a well-defined random variable with density (B.1), which
can be exactly simulated via the A/R scheme of Algorithm B.1. For more details on designing
simulation algorithms based on the A/R mechanism, see [65] and [8]. �
Algorithm 4.2. (Exact simulation of pre-jump intensity level for TS-contagion.) For the
TS-contagion, conditional on the intensity level λTi and the realisation of the (i + 1)th
interarrival time τi+1 = τ , the distribution of the (i + 1)th pre-jump intensity level λTi+τ− can
be exactly decomposed by

λTi+τ− | λTi

D= wλTi + T̃S + B̃ × S +
Ñ∑

k=1

Sk, (4.8)

where T̃S, B̃, S, Ñ and {Sk}k=1,2,... are all independent of each other,

• T̃S is an TS random variable of

T̃S ∼ TS
(

α,
κ

w
− 1

δ
,

θρ

αδ
(1 − wα)

)
, κ := β + 1

δ
, (4.9)

• B̃ is a Bernoulli random variable taking 0 with probability p1 and 1 with probability p2,
and

p1 := wλTi

(θρD/δ)(1 − α) + wλTi

, p2 := (θρD/δ)(1 − α)

(θρD/δ)(1 − α) + wλTi

,

D := δ

α

[(
κ − w

δ

)α

− βα

]
,

• S is a mixture-gamma random variable of

S ∼ Gamma
(

1 − α, κV0 − 1

δ

)
and

V0
D=

[
δβ + 1 − δ

(
αD

δ
U2 + βα

)1/α]−1

, U2 ∼ U [0, 1], (4.10)

• Ñ is a Poisson random variable of rate

θρ

αδ
κ(1 − α)Dw

and

Dw :=
∫ 1/w

1

1 − u−α

(κu − 1/δ)1−α
du,

• {Sk}k=1,2,... are i.i.d. with Sk ∼ Gamma (1 − α, κV − 1/δ), and V can be exactly
simulated via the A/R scheme of Algorithm C.1.
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Proof. Algorithm (4.2) is another explicit specification of Theorem 3.2. Similarly to the
previous gamma case in Algorithm 4.1, given the Lévy measure (4.3), we can identify that
(3.11) is the Laplace transform of B̃ × S from the calculation

ρ

δ

∫ ∞

0
e−vs

∫ s/w

s
es/δ e−y/δν(dy) ds + wλTi

ρ

δ

∫ ∞

0

∫ s/w

s
es/δ e−y/δν(dy) ds + wλTi

=
θρ

δ

∫ ∞

0
e−vs

∫ 1/w

1
s(1−α)−1 e−(κu−1/δ)su−1−α du ds + wλTi∫ ∞

0

∫ 1/w

1
s(1−α)−1 e−(κu−1/δ)su−1−α du ds + wλTi

= wλTi

(θρD/δ)(1 − α) + wλTi

× 1 + (θρD/δ)(1 − α)

(θρD/δ)(1 − α) + wλTi

×
∫ ∞

0
e−vs

∫ 1/w

1

(κu − 1/δ)1−α

(1 − α)
s(1−α)−1 e−(κu−1/δ)s u−1−α

D(κu − 1/δ)1−α
du ds

= p1 ×E[e−v0] + p2 ×E[e−vS],

where

D =
∫ 1/w

1

u−1−α

(κu − 1/δ)1−α
du = δ

α

[(
κ − w

δ

)α

− βα

]
.

Hence, the outcome of B̃ × S is trivially equal to 0 with probability p1 or the random variable
S with probability p2. S follows a mixture-gamma distribution with shape parameter 1 − α and
rate parameter κV0 − 1/δ. Here, V0 is a well-defined random variable with density function

fV0 (u) = u−α−1

D(κu − 1/δ)1−α
, u ∈

[
1,

1

w

]
.

It can be directly simulated via the explicit inverse transform (4.10), as its CDF is

FV0 (u) = δ

αD

[
u−α

(
κu − 1

δ

)α

− βα

]
, u ∈

[
1,

1

w

]
.

The first two terms of (3.8), i.e. (3.12), can be expressed by

E
[
e−vλTi+τ− e−(	Ti+τ−−	Ti ) | λTi

]
E

[
e−(	Ti+τ−−	Ti ) | λTi

]
= e−vwλTi × exp

(
− θρ

αδ
(1 − wα)

∫ ∞

0
(1 − e−vs)

1

sα+1
e−(κ/w−1/δ)s ds

)
× exp

(
− θρ

αδ
κ(1 − α) I

)
,

where

I =
∫ ∞

0
(1 − e−vs)

∫ 1/w

1

(κu − 1/δ)1−α

(1 − α)
s(1−α)−1 1 − u−α

(κu − 1/δ)1−α
du ds,
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Efficient simulation of Lévy-driven point processes 945

since the Lévy measure ν for the TS subordinator is specified in (4.3), and the Laplace exponent
of (3.12) can be rewritten as

ρ

∫ 1/δ+(v−1/δ)w

v

�
(
u − u−1/δ

v−1/δ
v
) − �(u)

1 − δu
du

= ρ

δ

∫ ∞

0
(1 − e−vs)

1

s
es/δ

∫ s/w

s

θ

yα+1
e−κs/w dy ds

+ ρ

δ

∫ ∞

0
(1 − e−vs)

es/δ

s

∫ s/w

s

θ (e−κy − e−κs/w)

yα+1
dy ds

=
∫ ∞

0
(1 − e−vs)

θρ

αδ
(1 − wα)

1

sα+1
e−(κ/w−1/δ)s ds

+ θρ

αδ
κ(1 − α) J

where

J =
∫ ∞

0
(1 − e−vs)

∫ 1/w

1

(κu − 1/δ)1−α

(1 − α)
s(1−α)−1 e−(κu−1/δ)s 1 − u−α

(κu − 1/δ)1−α
du ds.

So, for (3.12), it consists of three components: one deterministic trend, a TS process, and a
compound Poisson process. In particular, the rate of the compound Poisson process is Ñ is

θρ

αδ
κ(1 − α)Dw,

and the jump sizes follow a mixture-gamma distribution with shape parameter (1 − α) and rate
parameter κV − 1/δ. Here, V is a well-defined random variable with density

fV (u) = 1 − u−α

Dw(κu − 1/δ)1−α
, u ∈

[
1,

1

w

]
. (4.11)

Overall, we have the conditional Laplace transform of pre-jump intensity level explicitly as

E
[
e
−vλ

Ti+τ
−
i+1 | τi+1 = τ, λTi

]
= e−vwλTi × exp

(
− θρ

αδ
(1 − wα)

∫ ∞

0
(1 − e−vs)

1

sα+1
e−(κ/w−1/δ)s ds

)
× exp

(
− θρ

αδ
κ(1 − α)Dw K

)
×

[
wλTi

(θρD/δ)(1 − α) + wλTi

+ (θρD/δ)(1 − α)

(θρD/δ)(1 − α) + wλTi

×
∫ ∞

0
e−vs

∫ 1/w

1

(κu − 1/δ)1−α

(1 − α)
s(1−α)−1 e−(κu−1/δ)s u−1−α

D(κu − 1/δ)1−α
du ds

]
,

where

K =
∫ ∞

0
(1 − e−vs)

∫ 1/w

1

(κu − 1/δ)1−α

(1 − α)
s(1−α)−1 1 − u−α

Dw(κu − 1/δ)1−α
du ds.
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We can identify from the Laplace transforms above that the distribution of the (i + 1)th pre-
jump intensity level λTi+τ− conditional on λTi is exactly equal in distribution to the sum of
four simple elements provided in (4.8). All these components can be simulated exactly. To
simulate the TS random variable, one could use existing algorithms provided in [23], [53], [73]
or backward recursive (BR) scheme provided in [50]. And to sample the compound Poisson
random variable Ñ, one first needs to generate the intermediate random variable V with density
(4.11). Since there is no closed form for the inverse function of the CDF of V , we have to rely
on the A/R scheme of Algorithm C.1. �

Exact simulation of self-exciting jumps. Conditional on the realisations of the interarrival
time and pre-jump intensity level as above, the associated self-exciting jump can easily be
simulated by just following Algorithm 3.3 in general both for gamma and TS contagion
processes.

5. Numerical experiments

In this section, let us take the TS-contagion model as an example to illustrate the
performance of our exact scheme via extensive numerical experiments, and postpone the
implementation of the gamma-contagion model to Section 6 with more financial applications.
The simulation experiments here and elsewhere in this paper are all conducted on a desktop PC
with an Intel R© CoreTM i7-3770S CPU@3.10 GHz processor, 8.00 GB RAM, Windows 7 R©,
64-bit Operating System; the algorithms are coded and performed in MATLAB R© (R2014a),
and the computation time is measured by the elapsed CPU time in seconds. The true value of
the conditional expectation of NT for any fixed time T > 0 provided in Proposition 2.1 is used
to numerically validate and test our algorithms. The associated errors from the true values are
reported by three standard measures.

(i) Error = estimated value − true value.

(ii) Relative error (error %) = estimated value − true value

true value
.

(iii) Root mean square error RMSE =
√

bias2 + SE2, where the SE is the standard error of
simulation output, and the bias is the difference between the expectation of the estimator
and the associated true (theoretical) value. For the algorithm of exact simulation here,
the bias is conventionally set to zero.

We implement Algorithm 3.3 for the TS and IG cases in a fixed period of [0, T] with and
without self-exciting jumps.

Case I. Jump process with non-Gaussian OU intensity (see Definition 2.1).

Case II. Self-exciting jump process with non-Gaussian OU intensity (of Definition 2.2).

Note that as an intermediate step we have to generate the random variable T̃S of (4.9)
in Algorithm 4.2 for the general TS case. Several algorithms are available in the literature,
including approximation-based algorithms such as infinite series representation [91] and exact
algorithms such as simple stable rejection (SSR) [23], the double rejection algorithm [53],
the fast rejection algorithm [73], and the backward recursive (BR) scheme [50]. However, the
choice of algorithms is in fact not the focus of our paper. For the purpose of demonstration,
we adopt the BR scheme. It works extremely efficiently for some families, including those
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FIGURE 3: Simulated sample paths of the point processes and the associated time-series plots for Cases I
and II: TS Case I (δ, ρ;α, β, θ ;λ0) = (1.0, 0.5;0.25, 0.2, 0.25;0.5), TS Case II (δ, ρ;α, β, θ ;γ ;λ0) =
(1.0, 0.5;0.25, 0.2, 0.25;5.0;0.5); IG Case I (δ, ρ;c;λ0) = (1.0, 0.5;0.5;0.5), IG Case II (δ, ρ;c;γ ;λ0) =

(1.0, 0.5;0.5;4.0;0.5).
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FIGURE 4: Convergence analysis via RMSE versus CPU time by log-log plots for Cases I and II:
TS Case I (δ, ρ;α, β, θ ;λ0) = (1.0, 0.5;0.25, 0.2, 0.25;0.5), TS Case II (δ, ρ;α, β, θ ; γ ;λ0) = (1.0, 0.5;
0.25, 0.2, 0.25;5.0;0.5); IG Case I (δ, ρ;c;λ0) = (1.0, 0.5;0.5;0.5), IG Case II (δ, ρ;c;γ ;λ0) = (1.0, 0.5;

0.5;4.0;0.5).

with stability index the binary fractions 1/2n, n = 1, 2, . . . , which can easily be simulated
by recursively generating IG random variables without the A/R mechanism. For a general
parameter setting, one could simply adopt other algorithms such as the SSR scheme of
Algorithm E.1.

For numerical implementation, we further assume that the sizes of self-exciting jumps
follow an exponential distribution of rate γ > 0, i.e. Xi ∼ Exp (γ ), and the stable index takes
the values of, say, α = 1/4 for the TS case and α = 1/2 for the IG case, respectively. T̃S of
(4.9) is simulated using the BR scheme specifically designed for α = 1/4 in Algorithm D.1,
and the parameters are set as follows.

TS Case I. (δ, ρ;α, β, θ ;λ0) = (1.0, 0.5;0.25, 0.2, 0.25;0.5).

TS Case II. (δ, ρ;α, β, θ ;γ ;λ0) = (1.0, 0.5;0.25, 0.2, 0.25;5.0;0.5).

IG Case I. (δ, ρ;c;λ0) = (1.0, 0.5;0.5;0.5).

IG Case II. (δ, ρ;c;γ ;λ0) = (1.0, 0.5;0.5;4.0;0.5).

Simulated sample paths of the point processes within a long period of t ∈ [0, 500] with the
associated histograms are plotted in Figure 3, where the clustering or ‘contagious’ arrivals of
jumps can be clearly presented. Furthermore, to measure the accuracy and efficiency of our
scheme, we carry out the convergence analysis: Figure 4 presents log-log plots for the RMSE
against the CPU time for each case in two different time horizons T = 2, 5, respectively, and
the associated results in detail are reported in Tables 1 and 2. Overall, from the numerical
results reported in this section, it is evident that our exact scheme can achieve a very high level
of accuracy and efficiency.
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Efficient simulation of Lévy-driven point processes 949

TABLE 1: Simulation results for Cases I and II: TS Case I (δ, ρ;α, β, θ ;λ0) = (1.0, 0.5;0.25, 0.2, 0.25;
0.5), TS Case II (δ, ρ;α, β, θ ;γ ;λ0) = (1.0, 0.5;0.25, 0.2, 0.25;5.0;0.5).

Case Paths True Simulation Error Error% RMSE CPU time
(sec)

TS case

Case I, T = 2 100 1.0138 0.9300 −0.0838 −8.2683% 0.1281 0.11
400 1.0138 1.0525 0.0387 3.8146% 0.0834 0.36

1 600 1.0138 1.0363 0.0224 2.2118% 0.0398 1.37
6 400 1.0138 1.0184 0.0046 0.4548% 0.0208 5.29

25 600 1.0138 1.0167 0.0029 0.2853% 0.0099 20.53
102 400 1.0138 1.0133 −0.0005 −0.0509% 0.0049 81.74
409 600 1.0138 1.0127 −0.0012 −0.1147% 0.0024 321.78

Case I, T = 5 100 2.5488 2.5500 0.0012 0.0472% 0.2879 0.22
400 2.5488 2.4700 −0.0788 −3.0915% 0.1466 0.73

1 600 2.5488 2.6413 0.0925 3.6274% 0.0815 2.92
6 400 2.5488 2.5308 −0.0180 −0.7068% 0.0380 11.08

25 600 2.5488 2.5523 0.0035 0.1361% 0.0190 44.29
102 400 2.5488 2.5589 0.0101 0.3948% 0.0095 177.92
409 600 2.5488 2.5437 −0.0051 −0.1998% 0.0048 706.82

Case II, T = 2 100 1.1406 1.1500 0.0094 0.8281% 0.1520 0.14
400 1.1406 1.0925 −0.0481 −4.2133% 0.0909 0.36

1 600 1.1406 1.1581 0.0176 1.5404% 0.0453 1.48
6 400 1.1406 1.1233 −0.0173 −1.5145% 0.0228 5.71

25 600 1.1406 1.1468 0.0062 0.5472% 0.0114 23.21
102 400 1.1406 1.1305 −0.0101 −0.8835% 0.0056 90.92
409 600 1.1406 1.1454 0.0049 0.4282% 0.0028 365.82

Case II, T = 5 100 3.0290 2.9900 −0.0390 −1.2891% 0.3932 0.23
400 3.0290 3.0875 0.0585 1.9298% 0.1903 0.87

1 600 3.0290 3.0413 0.0122 0.4029% 0.0923 3.34
6 400 3.0290 3.0961 0.0670 2.2135% 0.0491 13.54

25 600 3.0290 3.0095 −0.0196 −0.6456% 0.0234 52.28
102 400 3.0290 3.0264 −0.0026 −0.0862% 0.0117 207.73
409 600 3.0290 3.0308 0.0017 0.0569% 0.0058 831.64

To be even more prudent, the simulation for the interarrival time based on the simplified
thinning scheme of Algorithm 3.2, as an intermediate step, can also be tested separately.
To numerically assess its accuracy and efficiency, we compare the simulated results of V∗
with its theoretical tail distribution P{V∗ > τ } as specified in (3.6), which can be calculated
explicitly by substituting the Laplace exponent � from (4.4). We set the parameters by
(δ, ρ;α, β, θ ) = (0.5, 1.0;0.9, 0.2, 0.25), and each estimation is based on 105 replications.
Error percentages (Error%) for measuring relative errors are reported in Table 3. The total
CPU time for producing the whole Table 3 is only 12.64 seconds, and the error percentages are
all very tiny.
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TABLE 2: Simulation results for Cases I and II: IG Case I (δ, ρ;c;λ0) = (1.0, 0.5;0.5;0.5), IG Case II
(δ, ρ;c;γ ;λ0) = (1.0, 0.5;0.5;4.0;0.5).

Case Paths True Simulation Error Error% RMSE CPU time
(sec)

Case I, T = 2 100 1.5677 1.5000 −0.0677 −4.3165% 0.1673 0.06
400 1.5677 1.6025 0.0348 2.2219% 0.0948 0.19

1 600 1.5677 1.6431 0.0755 4.8134% 0.0573 0.56
6 400 1.5677 1.5311 −0.0366 −2.3330% 0.0257 2.17

25 600 1.5677 1.5745 0.0068 0.4328% 0.0134 8.50
102 400 1.5677 1.5743 0.0066 0.4229% 0.0068 33.77
409 600 1.5677 1.5687 0.0011 0.0673% 0.0033 135.05

Case I, T = 5 100 4.5034 4.1500 −0.3534 −7.8468% 0.3880 0.11
400 4.5034 4.3075 −0.1959 −4.3494% 0.2118 0.27

1 600 4.5034 4.3394 −0.1640 −3.6416% 0.1026 1.06
6 400 4.5034 4.5084 0.0051 0.1125% 0.0546 4.23

25 600 4.5034 4.5268 0.0234 0.5202% 0.0272 16.83
102 400 4.5034 4.5236 0.0203 0.4500% 0.0135 67.08
409 600 4.5034 4.5037 0.0003 0.0067% 0.0068 268.24

Case II, T = 2 100 1.8035 1.7100 −0.0935 −5.1832% 0.21 0.11
400 1.8035 1.7925 −0.0110 −0.6087% 0.13 0.16

1 600 1.8035 1.7644 −0.0391 −2.1682% 0.06 0.58
6 400 1.8035 1.7758 −0.0277 −1.5357% 0.03 2.31

25 600 1.8035 1.8043 0.0008 0.0454% 0.02 9.31
102 400 1.8035 1.8025 −0.0010 −0.0569% 0.01 36.07
409 600 1.8035 1.8039 0.0004 0.0232% 0.00 145.36

Case II, T = 5 100 5.5817 5.2400 −0.3417 −6.1216% 0.4584 0.11
400 5.5817 5.4000 −0.1817 −3.2550% 0.2753 0.34

1 600 5.5817 5.6300 0.0483 0.8656% 0.1344 1.25
6 400 5.5817 5.5902 0.0085 0.1517% 0.0698 4.99

25 600 5.5817 5.5648 −0.0169 −0.3024% 0.0347 19.83
102 400 5.5817 5.5777 −0.0040 −0.0713% 0.0173 77.70
409 600 5.5817 5.5738 −0.0079 −0.1419% 0.0087 315.71

TABLE 3: Comparison between the theoretical formulas and the associated simulation results for the
simplified thinning scheme of Algorithm 3.2 with each estimation based on 105 replications.

τ P{V∗ > τ } Simulation Error%

0.1 98.66% 98.62% −0.0367%
0.2 94.87% 94.80% −0.0752%
0.3 89.10% 89.01% −0.0965%
0.4 81.85% 81.81% −0.0499%
0.5 73.66% 73.60% −0.0819%
0.6 65.01% 64.86% −0.2268%
0.7 56.35% 56.12% −0.3943%
0.8 48.00% 47.89% −0.2333%
0.9 40.24% 40.15% −0.2239%
1.0 33.22% 33.13% −0.2773%
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6. Comprehensive risk analysis for a large portfolio facing contagious losses and
unexpected exogenous gamma shocks

It has now been widely recognised among academics and financial practitioners that risk
spreads through highly interconnected business networks, and defaults could trigger more
defaults via a ‘domino’ effect. The resulting losses presented in financial markets could be
amplified. As earlier mentioned in Section 4, gamma distribution is a popular building block in
financial applications. In particular, it plays an important role in credit risk modelling. For
instance, both the widely used framework of [42] in the banking industry and influential
papers by [67], [68], and [59] in the literature, assumed that macroeconomic factors are
driven by independent gamma-distributed random variables. Further, it can also be equipped
as a fundamental risk driver for price movements, e.g. the popular variance gamma model
[83, 84]. More recent evidence has been found by [64] that long periods with relatively
few defaults are followed by episodes of significant clustering of defaults, and the resulting
distribution of default rates is highly skewed towards large values. This motivates us to adopt
our new model of gamma contagion as an example for applications in risk management for
a portfolio facing a ‘domino’ effect of losses. We assume that exogenous commonly shared
risk is dynamically powered by a gamma process. More precisely, we adopt the gamma
distribution as the fundamental driver of randomness (or gamma shock) to construct the
OU- interarrival intensity for a point process Nt in Definition 2.2. A simulated path of this
interarrival intensity process within the time period t ∈ [0, 5] based on the parameter setting
(δ, ρ;a, b;λ0) = (1.0, 1.0;4.0, 0.5;2.0) was plotted in Figure 1 above, where we can observe
relatively high-frequency and small shocks. In fact, Barndorff-Nielsen and Shephard [17]
called it the OU- process, and it has become a very popular tool for modelling stochastic
volatilities in a continuous-time set-up. Hainaut and Devolder [69] used it as a special case of
Cox processes to model human mortality rates, and applied to actuarial valuation in insurance.
Eberlein, Madan, Pistorius, and Yor [57] treated it as a one-factor model for describing the
evolution of instantaneous interest rates.

In reality, contagion may be triggered by losses or defaults of banks or other financial
institutions through inter-institutional lendings in the interbank market, or it may be further
amplified due to some common asset holdings of overlapping portfolios [27]. We offer some
numerical examples of comprehensive risk analysis for a large portfolio facing contagious
defaults and losses. We construct a simple contagious loss process to capture the propagated
defaults for a generic large pool of financial institutions (banks for short) within a financial
system. The following framework, of course, would work generically for other similar
institutions. The aggregate loss process of this large portfolio by time t is

Lt =
Nt∑

i=1

Li, t ≥ 0,

where Nt is a -contagion process, and Li ≥ 0 is the absolute value of the loss size for the ith
default, of which the mean is denoted by μL :=E[Li] for any index i. We assume that the sizes
of self-exciting jumps in (2.3) generally satisfy

Xi = �i × g(Hi), (6.1)

where

• Hi is the history of the loss path until time t, i.e. Hi := {Lj}j<i ∪ {Tj}j≤i,

• �i > 0 is the amplification multiplier, the amplification mechanisms during financial
crises in detail were described and analysed in [25], [26], and more recently in [2], which
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might be dependent on the degree of financial connectivity of the underlying company i
to others, or the effects of policymakers’ interventions to limit the extent of contagion,

• g(·) is a general non-negative function of the losses. Since the jump sizes in (6.1) follow a
FT−

i
-measurable distribution as explained earlier in Definition 2.2, similarly the function

g(·) is also very general, and it can include all past losses, that is,

g(·) = g(T1, T2, . . . , Ti, L1, . . . , Li−1),

which could adopt functional forms, for example, assigning weight to each loss size
according to its loss time or similarly to autoregressive time series models.

In fact, (6.1) provides a channel for contagion (or feedback) effects of market participants’
reactions to adverse scenarios. The economic interpretation for this model is that the impacts
and the timing of unexpected exogenous gamma shocks acting on the entire portfolio as
macroeconomic scenarios are modelled by a mean-reverting gamma-driven OU process. The
shocks might not lead to an immediate default but act on the underlying intensity via a positive
jump, which increases the default probability afterwards. Meanwhile, endogenic shocks, i.e.
contagious losses due to the propagated defaults, are modelled by self-exciting jumps, and the
associated magnitudes can be captured by jump sizes {Xi}i=1,2,....

The great flexibility of our exact simulation scheme allows us to accurately and efficiently
generate highly comprehensive scenarios for risk assessment. In general, our algorithms can
simulate sample paths when loss sizes Li may depend on the entire history of Nt and λt before
or at time Ti. We discuss several circumstances that can be captured by our models as follows.

6.1. A simple benchmark model

The loss occurring within a financial institution may spread via various business channels
and eventually trigger subsequent losses of others in markets. Intuitively, a larger loss may
make a larger impact. For convenience of illustration, we assume that the sizes of self-exciting
jumps satisfy

Xi = �̄ × Li,

where �̄ > 0 is the average amplification multiplier, meaning that each investment has a linear
and homogeneous amplification effect. We further assume that each loss size is exponentially
distributed, i.e. Li ∼ Exp (�), � > 0 with mean μL := 1/�. To assess the overall risk of this
portfolio, we implement the exact simulation of Algorithms 3.3 and 4.1 with (Case I) and
without (Case II) contagion in the fixed time period [0, t], respectively:

Case I. (δ, ρ;a, b;λ0) = (0.5, 0.5;0.5, 2.0;0.5),

Case II. (δ, ρ;a, b;�, �̄ ;λ0) = (0.5, 0.5;0.5, 2.0;8.0, 2.0;0.5).

We concentrate on the default number Nt in the system. Case I or II can be considered as a
benchmark model, as by Proposition 2.1 the expected default number has analytical forms.

Proposition 6.1. (Expectation of Nt.) The expected default number until time t is given by

E[Nt | λ0] = λ0
1 − e−ηt

η
+ ρ

η

(
t − 1 − e−ηt

η

)
a

b
, η �= 0, (6.2)

where

η =
{

δ for Case I,

δ − �̄/� for Case II.
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FIGURE 5: Sensitivity analysis for the expected number of defaults E[Nt=5 | λ0] with respect to a and b
based on the parameters (δ, ρ;�̄ ;λ0) = (0.5, 0.5;2.0;0.5).

TABLE 4: Simulation results for Cases I and II and time t = 2, 5: (δ, ρ;a, b;λ0) = (0.5, 0.5;0.5, 2.0;0.5)
for Case I, and (δ, ρ;a, b;�, �̄ ;λ0) = (0.5, 0.5;0.5, 2.0;8.0, 2.0;0.5) for Case II.

Case Paths True Simulation Error Error% RMSE CPU time
(sec)

Case I, t = 2 10 000 0.8161 0.8154 −0.0007 −0.08% 0.0094 5.00
40 000 0.8161 0.8151 −0.0010 −0.12% 0.0047 19.50

160 000 0.8161 0.8135 −0.0026 −0.31% 0.0024 80.13
640 000 0.8161 0.8159 −0.0001 −0.02% 0.0012 322.89

2 560 000 0.8161 0.8163 0.0003 0.03% 0.0006 1 280.63
Case I, t = 5 10 000 1.7090 1.7297 0.0207 1.21% 0.0152 9.66

40 000 1.7090 1.6993 −0.0097 −0.57% 0.0076 37.45
160 000 1.7090 1.7085 −0.0004 −0.02% 0.0038 148.38
640 000 1.7090 1.7079 −0.0010 −0.06% 0.0019 575.55

2 560 000 1.7090 1.7083 −0.0006 −0.04% 0.0009 2 291.14
Case II, t = 2 10 000 1.0000 0.9983 −0.0017 −0.17% 0.0128 5.94

40 000 1.0000 1.0054 0.0054 0.54% 0.0065 23.13
160 000 1.0000 1.0073 0.0073 0.73% 0.0032 92.63
640 000 1.0000 1.0000 0.0000 0.00% 0.0016 371.98

2 560 000 1.0000 0.9995 −0.0005 −0.05% 0.0008 1 489.06
Case II, t = 5 10 000 2.5000 2.5060 0.0060 0.24% 0.0263 13.06

40 000 2.5000 2.4964 −0.0036 −0.14% 0.0132 52.00
160 000 2.5000 2.4882 −0.0118 −0.47% 0.0065 201.44
640 000 2.5000 2.4972 −0.0028 −0.11% 0.0033 800.75

2 560 000 2.5000 2.4983 −0.0017 −0.07% 0.0016 3 197.61

To explore the models, let us first carry out a sensitivity analysis for the expected default
number E[Nt | λ0] with respect to their key parameters for controlling the external gamma
shocks, a and b, with and without contagion, and the results are provided respectively in
Figure 5. Numerical tests for our algorithms are based on the true means (6.2). The associated
errors reported by three standard measures are reported in Table 4. Convergence analysis via
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FIGURE 6: Convergence analysis via the log-log plots of the RMSE versus the CPU time for
Cases I and II and t = 2, 5: (δ, ρ;a, b;λ0) = (0.5, 0.5;0.5, 2.0;0.5) for Case I, and (δ, ρ;a, b;�, �̄ ;λ0) =

(0.5, 0.5;0.5, 2.0;8.0, 2.0;0.5) for Case II.

log-log plots of the RMSE against the CPU time for Cases I and II and t = 2, 5 is presented in
Figure 6. We can observe that simulations are pretty fast with very tiny errors, which provides
numerical evidence of accuracy and efficiency for our algorithms.

6.2. A model with contagion threshold

In reality, each loss might not necessarily cause contagion immediately throughout the entire
system. Contagion may be only triggered when the loss exceeds a certain high level, that is,
contagion is likely to occur only in severe scenarios, which has also been reported in [59]. This
circumstance could be modelled by a mixture of Cases I and II, by assuming that the sizes of
self-exciting jumps Xi satisfy

Xi = �i × (Li − Ki)
+,

where Ki ≥ 0 is the contagion threshold (i.e. the threshold that triggers the contagion effect
of the ith loss Li), and the contagion has been partially capped. If a bank is more vulnerable,
its threshold is more easily reached. Alternatively, we may interpret Ki as a capital buffer,
and it could be a certain quantile of the loss distribution Li. If we assign the same quantile
to all banks, it is equivalent to an identical economic capital applying to all banks, which
is the assumption made by [59]. If the magnitude of loss overshoots the threshold, the bank
may become insolvent, and this risk may then spread to other banks (through the interbank
market) resulting in an increase in the default intensity of the entire system (but this would not
immediately cause other defaults). If the thresholds are very high compared to the levels of
loss, then it corresponds to a ‘weak contagion’ environment, whereas if the thresholds are very
low, then it is a ‘strong contagion’ environment.

With the contagion threshold, contagion could be partially or fully triggered. Here, for
numerical illustration, we assume that losses are exponentially distributed and the ampli-
fication multipliers and contagion thresholds are homogeneous, i.e. Li ∼ Exp (�), ai ≡ �̄ ,
and Ki ≡ K ≥ 0. The expected default number can hardly capture the full picture of the
risk, and we have to look at the entire distribution. We choose K = ∞, 1/8, 0 and plot the
estimated probability mass function (PMF) of the total default number within the period of
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TABLE 5: Quantiles of the default number Nt=5, estimated from 106 replications based on the parameter
setting (δ, ρ;a, b;�, �̄ ;λ0) = (0.5, 0.5;0.5, 2.0;8.0, 2.0;0.5), with homogeneous contagion thresholds

K = ∞, 1/8, 0, respectively.

Quantile

K 5% 25% 50% 75% 95% Mean Min Max

∞ 0 1 1 2 5 1.7075 0 17
1/8 0 1 2 3 5 1.9417 0 22
0 0 1 2 4 8 2.5021 0 36
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FIGURE 7: Probability mass function (PMF) of the default number Nt=5, estimated from 106 replications
based on the parameter setting (δ, ρ;a, b;�, �̄ ;λ0) = (0.5, 0.5;0.5, 2.0;8.0, 2.0;0.5), with homogeneous

contagion thresholds K = ∞, 1/8, 0, respectively. The associated quantiles are reported in Table 5.

[0, t] in Figure 7, and the corresponding quantiles are reported in Table 5. More specifically,
cases K = ∞, 1/8, 0 correspond to the non-contagion (i.e. Case I), partial contagion and
full contagion (i.e. Case II), respectively. We can clearly observe that when K decreases, the
contagion would become more pronounced and the tail of losses become heavier. The system
could be more susceptible to contagion risk when capital buffer K is eroded, and contagion
effects magnify the content of risk. As summarised by [58], bank defaults may be driven by
losses from market and credit risk (i.e. fundamental default), and bank defaults may, however,
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FIGURE 8: Probability mass function (PMF) of the default number Nt=5, estimated from 106 repli-
cations based on the parameter setting (δ, ρ;a, b;�̄ ;λ0) = (0.5, 0.5;0.5, 2.0;2.0;0.5), with � = 8, 4, 2,

respectively. The associated quantiles are reported in Table 6.

also be initiated by contagion as a consequence of other bank failures in the system (i.e.
contagious default). The two types of default under our contagion model (i.e. the self-exciting
jump sizes are not all equal to zero) are in fact mixed, and interact.

6.3. A model with explosive defaults

Contagion or feedback effects could be even further reinforced due to highly leveraged
positions (e.g. complicated credit derivatives), and the resulting system thereby becomes
explosive; see [38] for discussion of the impacts of financial innovations. This scenario would
be extremely severe, rare but possible, that is, the entire system is unstable and near the crash
boundary. Mathematically, it corresponds to the non-stationary case when η < 0 in our models.
This may be due to ‘liquidity black holes’ or ‘fire sales’ of assets: these further depress prices
and lead to a sharp drop in liquidity and may also cause other institutions to fail in a self-
reinforcing vicious spiral [36, 37, 75, 86]. All previous examples were conducted under the
stationary condition η > 0, and in fact our algorithms can also deal with non-stationary cases.
In Figure 8, we offer three representative examples of η = 1/4, 0, and −1/2 (or � = 8, 4,
and 2) for stationary, critical, and explosive phases, respectively, and the associated quantiles
are reported in Table 6. In particular, η = 0 is the critical level of stability. The resulting loss
distributions could present heavy tails, which might be very desirable for many regulators and
practitioners.
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TABLE 6: Quantiles of the default number Nt=5, estimated from 106 replications based on the parameter
setting (δ, ρ;a, b;�̄ ;λ0) = (0.5, 0.5;0.5, 2.0;2.0;0.5), with � = 8, 4, 2, respectively.

Quantile

� 5% 25% 50% 75% 95% Mean Min Max

8 0 1 2 4 8 2.4969 0 40
4 0 1 2 5 15 4.0628 0 130
2 0 1 4 16 73 15.5662 0 743

6.4. Other models

In fact, our models and the associated algorithms could be further extended in several other
directions, which we discuss briefly due to space limitations.

• A model with credit improvement. In this set-up we allow for the possibility of credit
improvement or relief. For example, when a big loss occurs, a rescue plan may be
released such as a ‘bailout’ or a large cash injection into the system to ensure liquidity
provision. This might significantly enhance the financial system in a relatively short
term, and the intensity level may have an immediate decline instead of a climb, that is,

λTi = diλT−
i
, (6.3)

where di > 0 is a multiplier (which could be assumed to be a positive random variable).
This model allows the intensity to jump in two ways, which can be simply generated by
replacing (3.13) in step 4 of Algorithm 3.3 with (6.3).

• A model with structural breaks. A severe financial failure could make a large impact
on the entire economic environment. For example, the collapse of the US investment
banking giant Lehman Brothers in September 2008 marked a clear tipping point for
the entire world financial market. Such a failure would immediately act on the default
intensity process and cause a structural break for the entire financial system. To model
this pattern, we have to go beyond the original definition of the underlying intensity
process (2.2), but our algorithms can still handle it easily; that is, after each self-exciting
jump, all parameters � can be reset afterwards to mimic a structural break. We can
assign a new parameter set �i immediately after the ith defaults. �i could depend on
the value of the size of the ith self-exciting jump Xi or even its entire history. So, the
underlying intensity process (2.2) should be redefined locally based on the interarrival
intensity (2.1) between two successive default times rather than globally throughout
the positive real line t ∈R

+. Let us illustrate this with a simple example. Suppose
there are two economic states after each self-exciting jump, one corresponding to a
deteriorating economic environment and the other to an improved environment. We can
use the parameter settings of �1 and �2 to model these two states respectively. We
can choose one to be stable (i.e. the stationary case η > 0) and the other to be unstable
(i.e. the non-stationary case η > 0). Then the entire system could shift between locally
stable and locally explosive phases. Analysis for contagion risk based on the stability of
branching processes and allowing for a shift between two phases can also be found in
[27] and [38].
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• A model with multiple exogenous risk drivers. In practice, there may be multiple risk
factors, such as sector-wide or market-wide events, commonly shared by all institutions.
Multi-factor models are then required for modelling intensity processes; see e.g. [54],
[44], and [82]. We could use a superposition of OU intensity processes driven by
different gamma processes to capture the corresponding multiple risk factors. Similarly,
the superposition of OU stochastic volatility processes was proposed in [13] and [15],
[16]. Accordingly, our algorithms may be extendable to this version by using the
superposition theory of point processes [43].

• A model with multilateral contagion. Contagion occurs not only within one market (or
system) but could also spread across different markets. For example, when the loss
contagion and investors’ fears occur in the options market, this can also spread to the
underlying equity or futures markets on which the options are written. This type of
contagion can be captured by adding mutually exciting jumps. As for the multivariate
Hawkes process, a multi-dimensional -contagion process has to be developed to
capture self-contagion effects for each individual, as well as the mutual contagion effects
among them.

7. Conclusion

In this paper we have introduced a new family of self-exciting jump processes whose
intensities are driven by non-Gaussian OU processes, namely Lévy-driven contagion pro-
cesses. Backed by the very large family of Lévy subordinators, it indeed offers much
richer choices beyond the classical Hawkes process for modelling the ‘contagion’ of event
arrivals in a continuous-time set-up in finance, economics, and many other fields. We have
derived some important distributional properties of these new processes which lead to an
exact simulation framework in general. In particular, we have developed exact simulation
algorithms by the decomposition approach for the gamma and tempered stable cases as typical
examples. The algorithms are accurate and efficient, and have been numerically verified and
tested by extensive numerical experiments. We also provide applications to portfolio risk
management, which again illustrate the efficiency, accuracy, applicability, and flexibility of our
algorithms. As a class of reduced-form models, it could easily be extended to pricing financial
derivatives, particularly multiple-name credit products (e.g. collateralised debt obligations and
mortgage-backed securities). It can be employed empirically when input data are available
for parameter calibration. Furthermore, it could be widely applied to many other areas, for
example to describe high-frequency trading data in market microstructure, claim arrivals for
an insurance portfolio, or jump propagation and disclosure dynamics in financial markets
[1]. Their statistical inference and econometric analysis for this new framework, and further
extensions to multi-dimensional point processes for modelling multilateral contagion, as well
as further applications and empirical work for portfolio credit risk analysis, could be very
interesting and meaningful topics for future research.

Appendix A. Basic distributional properties

In this section we derive some basic distributional properties such as Laplace transforms and
means to characterise this new family in general. The means will also be used for validating
the associated simulation algorithms. First, let us provide the Laplace transform of intensity
process as follows.
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Proposition A.1. (Laplace transform of intensity process.) Under the condition δ > μG, i.e.
η > 0, the Laplace transform of λt+s conditional on λt is given by

E[e−vλt+s | λt] = exp

(
− G−1

v (s)λt − ρ

∫ v

G−1
v (s)

�(u)

δu + ĝ(u) − 1
du

)
, s > 0, (A.1)

where G−1
v (·) is the well-defined inverse function of

Gv(x) :=
∫ v

x
[δu + ĝ(u) − 1]−1 du.

The Laplace transform of the asymptotic and stationary intensity process is given by

lim
t→∞ E[e−vλt ] = exp

(
− ρ

∫ v

0

�(u)

δu + ĝ(u) − 1
du

)
. (A.2)

Proof. The infinitesimal generator of (λt, Nt, t) acting on any function f (λ, n, t) within its
domain 
(A) is given by

Af (λ, n, t) = ∂f

∂t
− δλ

∂f

∂λ
+ ρ

{ ∫ ∞

0

[
f (λ + z, n, t) − f (λ, n, t)

]
ν(dz)

}
+ λ

[ ∫ ∞

0
f (λ + y, n + 1, t) dG(y) − f (λ, n, t)

]
.

See [51], [52], and [56] for more details on using infinitesimal generators. Using the martingale
approach similarly to [46], it is easy to obtain (A.1). Note that we have G−1

v (t) → 0 when
t → ∞; then the Laplace transform becomes independent of the time and the initial intensity,
so we have (A.2). �

Note that the interarrival intensity process, i.e. the intensity process between two consecu-
tive self-exciting jumps (excluding self-exciting jumps), is simply a Lévy-driven OU process.
Hence, given the arrival times {Ti}i=1,2,..., the Laplace transform of λTi+s conditional on the
intensity level λTi for any fixed time s within the time period (0, Ti+1 − Ti) can be expressed
more nicely as follows, by setting ĝ(u) = 1 in (A.1) to eliminate all self-exciting jumps.

Corollary A.1. (Laplace transform of the interarrival intensity process.) Given the ith and
(i + 1)th arrival times Ti and Ti+1 respectively, the Laplace transform of λTi+τ conditional on
λTi is given by

E[e−vλTi+τ | λTi] = exp

(
− v e−δτ λTi − ρ

δ

∫ v

wv

�(u)

u
du

)
, τ ∈ (0, Ti+1 − Ti).

The mean of point process is provided in Proposition 2.1 with the proof as follows.

Proof. The mean of Nt+s conditional on Nt and λt immediately follows by calculating

E[Nt+s | Nt, λt] = Nt +E

[ ∫ t+s

s
λu du | λt

]
= Nt +

∫ t+s

s
E[λu | λt] du,

where

E[λt+s | λt] =

⎧⎪⎨⎪⎩
ρμZ

η
+

(
λt − ρμZ

η

)
e−ηs η �= 0,

λt + ρμZs η = 0,

which can be derived by differentiating the conditional Laplace transform (A.1). �
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Appendix B. A/R scheme for exact simulation of random variable W

Algorithm B.1. (A/R scheme for W.) The random variable W with density

fW (u) = 1

Cw

ln u

ϑu − 1/δ
1{1,1/w}, (B.1)

can be exactly simulated by the following A/R procedure.

(i) Generate a random variable

Ee = w−√
U0 , U0 ∼ U [0, 1]. (B.2)

(ii) Generate a standard uniform random variable U ∼ U [0, 1].

(iii) If

U ≤ bEe

ϑEe − 1/δ
,

then accept and set W = Ee. Otherwise, reject this candidate and go back to step 1.

Proof. Note that

ϑu − 1

δ
= bu + 1

δ
(u − 1) ≥ bu, u ∈

[
1,

1

w

]
.

Then we have

fW (u) = 1

Cw

ln u

ϑu − 1/δ
≤ 1

Cw

ln u

bu
.

The density function of the envelope Ee is

fEe(u) = 1

Ew

ln u

u
, Ew := 1

2
ln2 w, u ∈

[
1,

1

w

]
,

and the CDF is

FEe (u) =
(

ln u

ln w

)2

, u ∈
[

1,
1

w

]
,

which has the analytic inverse

F−1
Ee

(x) = w−√
x, x ∈ [0, 1].

Therefore, we have

fW (u)

fEe(u)
=

(
1

Cw

ln u

ϑu − 1/δ

)/(
1

Ew

ln u

u

)
≤

(
1

Cw

ln u

bu

)/(
1

Ew

ln u

u

)
= 1

b

Ew

Cw
= ln2 w

2bCw
:= c̄w,

and the acceptance condition for the A/R scheme is

U ≤ 1

c̄w

fW (Ee)

fEe (Ee)
= b

Ee

ϑEe − 1/δ
.

�
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Appendix C. A/R scheme for exact simulation of random variable V

Algorithm C.1. (A/R scheme for V.) The random variable V with density (4.11) can be exactly
simulated via the following A/R procedure.

(i) Generate a random variable

Ee =
{

1

2

[
(αCwU3 + 2) +

√
(αCwU3 + 2)2 − 4

]}1/α

, U3 ∼ U [0, 1], (C.1)

where

Cw = 1

α
(w−α + wα − 2).

(ii) Generate a standard uniform random variable U4 ∼ U [0, 1].

(iii) If

U4 ≤ β1−α

Eeα−1 − Ee−1−α

1 − Ee−α

(κEe − 1/δ)1−α
,

then accept and set V = Ee. Otherwise, reject this candidate and go back to step 1.

Proof. The density of V in (4.11) can be rewritten as

fV (u) = 1

Dw

1

κ1−α

1 − u−α

(u − 1/(δκ))1−α
, u ∈

[
1,

1

w

]
.

By introducing a constant ξ such that

ξ ≥ u1−α

(u − 1/(δκ))1−α
for all u ∈

[
1,

1

w

]
,

we have

fV (u) <
1

Dw

ξ

κ1−α
[u−(1−α) − u−(1+α)] for all u ∈

[
1,

1

w

]
.

Since the function
u1−α

(u − 1/(δκ))1−α

is a strictly decreasing function of u ∈ [1, 1/w], that is,

d

du

[
u1−α

(u − 1/(δκ))1−α

]
= (α − 1)

1

δκ
u−α

(
u − 1

δκ

)α−2

< 0,

we have ξ ≥ (κ/β)1−α for any u ∈ [1, 1/w], and then

ξ ≥ max
1≤u≤1/w

{
u1−α

(u − 1/(δκ))1−α

}
=

(
κ

β

)1−α

.

We choose Ee to be the envelope random variable with density

gEe (u) = 1

Cw
[u−(1−α) − u−(1+α)], u ∈

[
1,

1

w

]
.
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Its CDF is

FEe (u) = 1

αCw
(u−α + uα − 2), u ∈

[
1,

1

w

]
,

which has an explicit inverse function

F−1
Ee

(x) =
{

1

2

[
(αCwx + 2) +

√
(αCwx + 2)2 − 4

]}1/α

, x ∈ [0, 1].

Hence, Ee can be exactly simulated via the explicit inverse transform (C.1). Setting ξ =
(κ/β)1−α , we have the acceptance rate (i.e. the expected number of candidates generated until
one is accepted)

c̄w = ξ

κ1−α

Cw

Dw
= β1−α Cw

Dw
≥ fV (u)

gEe (u)
. �

We have also carried out some numerical tests for Algorithm C.1 and found that it can
achieve a high level of efficiency and accuracy. For example, it only takes about 7 seconds to
generate 106 replications with percentage error 0.1% for the parameter setting (δ, ρ, α, β, θ ) =
(0.5, 1, 0.9, 0.2, 0.25).

Appendix D. Backward recursive (BR) scheme for stable index α = 1/4

Algorithm D.1. (Backward recursive (BR) scheme.) To simulate one random variable of
TS (α = 1/4, β, θ ), we proceed as follows.

(i) Simulate an IG random variable

S2 ∼ IG
(

2θβ−1/4

(
3

4

)
, 8θ22

(
3

4

))
.

(ii) Conditional on one realisation of S2, simulate another IG random variable,

S1 | S2 ∼ IG
(

1

2
β−1/2S2,

1

2
S2

2

)
.

(iii) The resulting random variable S1 is exactly equal in distribution to TS (α = 1/4, β, θ ).

Note that IG random variables can be very efficiently simulated without the A/R mechanism
using the classical algorithm developed by [85]. See the proof of this algorithm and other
choices of the stable index α in [50].

Appendix E. Simple stable rejection (SSR) scheme

Algorithm E.1. (Simple stable rejection (SSR) scheme.) To simulate one random variable
TS ∼ TS (α, β, θ ), we proceed as follows.

(i) Generate a stable random variable S(α, θ ) via

S(α, θ )
D= ( − θ( − α))1/α

sin (αUs + 1
2πα)

( cos (Us))1/α

[
cos ((1 − α)Us − 1

2πα)

Es

](1−α)/α

,

where Us ∼ U [ − 1
2π, 1

2π ], Es ∼ Exp (1), and they are independent.
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(ii) Generate a uniformly distributed random variable U ∼ U [0, 1].

(iii) If U ≤ e−βS(α,θ), then accept and set TS = S(α, θ ). Otherwise, reject it and go back to
step 1.
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